D-A133 258 APPLICATION OF TWO-DIMENSIONAL DISCRETE-ORDINATES 11 AN
METHODS TO MULTIPLE SCA. . (U) ARMY ARMAMENT RESEARCH AND
DEVELOPMENT COMMAND ABERDEEN PROVI.. A ZARDECKI ET AL.

UNCLASSIFIED JUN 83 ARCSL-TR-83822 F/G 12/1 -




R R e T A R e B e W T ) ot M E o P i M Wt e B e B a0 B @y v Me ot @ A" & @™ 4™ W T N et e et T e . __.A.‘_'.l

-

i
g

- s b
x =Rl P¥]
: = U g

\ | I § = m

> M=

2

O

llas

LI XFE I L Sk,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B -3 o bl

A 5P Lol

" g T GV R IO

|




S or——

.

Al

¥

D-RAI332ASE§

-

DTIC FILE copy

A SN AR AR i Sart e ac s sy A L R S T e——

AD

CHEMICAL
SYSTEMS

US Army Armament Research and Development Command
LﬂBORﬂTORY Aberdeen Proving Ground, Maryland 21010

TECHNICAL REPORT
ARCSL-TR-83022

APPLICATION OF TWO-DIMENSIONAL DISCRETE-ORDINATES METHOD
TO MULTIPLE SCATTERING OF LASER RADIATION

by

A Zardecki
S. A. W. Gerstl

Los Alamos National Laboratory
J. F. Embury

Physics Branch
Research Division

DTIC

June 1983 ELECTE
0CT4 1983

Approved for public release; distribution unlimited.

&
e
c-
oo
vV

Aol ol o 2 s g

!

. '
e hidntiai s g A A A

Fo
2 s
PV R R A

L

. | Co
AAA‘LAJ\A_-: Ak 4




Disclaimer

The findings in this report are not to be construed as an official Departiment of the
Army position unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

A . o g T ) P |




aa o o -y i Tt g .
et LRI A SN0 AN A NS Attt e At G B U O TS

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wnen Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORYT NUMBER 72. GOVTY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
ARCSL-TR-83022 A:b - Am ﬂ

S. TYPE OF REPORT & PERIOD COVERED
December 6, 1982-
February 17, 1983

6. PERFORMING ORG. REPORT NUMBER

4. TITLE (and Subtitle)
APPLICATION OF TWO-DIMENSIONAL DISCRETE-
ORDINATES METHOD TO MULTIPLE SCATTERING
OF LASER RADIATION

's: .

Y N
O

4

7. AUTHOR(®) 8. CONTRACT OR GRANT NUMBER(s)

A Zardecki
S. A. W. Gerstl
J. F. Emnbury

S. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK
Commander, Chemical Systems Laboratory AREA & WORK UNIT NUMBERS
ATTN: DRDAR-CLB-PS 1L162622 A552,

Aberdeen Proving Ground, Maryland 21010

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Commander, Chemical Systems Laboratory June 1983
ATTN: DRDAR-CLJ-IR, [13. NUMBER OF PAGES
Aberdeen Proving Ground, Maryland 21010 34

14. MONITORING AGENCY NAME & ADDRESS(!! diiferent from Controlling Oftice) 15. SECURITY CL ASS. (of this report)

JNCLASSIVIED

158 DECL ASSIFICATION. DOWNGRADING
SCHEDULE NA

16. OISTRIBUTION STATEMENT (of this Report)

Approved for public reiease; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse gide if necessary and identily by block number)

-
‘ Code TWOTRAN Delta-M approximation CDC-7600 computer
- Laser multiple scattering Linear Boltzmann equation Cray-1 computer
5 Discrete ordinates 2D Radiance distribution function Code THREETAN
; Lambert-Beer law Standard numerical algorithms T amter time
. X-y and r-z geo:netry Phase space points (Continued on reverse side)
20. ABSTRACT (Continue en reverse side i necesssry and identily by block number) Ho aocthors
I ™ The discrete-ordinates finite element radiation transport code! TWOTRAN is
applied to describe the multiple scattering of a laser beam from a reflectij\g target. For
a model scenario involving a 99% relative humidity rural aerosol, weé compute the

average intensity of the scattered radiation and correction factors to the Lambert-Beer
law arising from multiple scattering. As’di# results indicate, two-dimensional x-y and
r-z geometry modeling can reliably describe a realistic three-dimensional s-enario. .|

(Continued on reverse side)

FORM
DD , tan 7> VT3  EDITION OF 1 NOV 65 1S oBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION QF THIS PAGE (When Date Entered)

9 LRGP AP




R O T ——— o Y
2 :
“‘

N
- UNCLASSIFIEY)

:~ SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)
I'
& 19. KEYWORDS (continued)
{ " General anisotropic scattering Pointwise convergence Expansion coefficients
A Collimated Gaussian beam Volu:ne extinction Extinction coefficient
- Ground reflectivity coefficient Scattering phase function
s Nirac delta function Koschmeider formula Legendre polynomials
- Number 2M-1 Eddington approximation AGAUSX code
20. ABSTRACT (continued)
3 Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show

that for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 kmn) the
target signature in a distant detector hecomes dominated by multiply scattered radiation
‘- from interactions of the laser light with the aerosol environment. The merits of the
scaling group and the delta M approximation for the transfer equation are also explored.

. Lf\\
!

AL LN

0"-

P

P
[

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




PREFACE o

Funds for the testing and recording of results presented in this report were supplied
from Project 1L162622A552, Application of 2D Discrete-Ordinates Method to Multiple

Scattering of Laser Radiation. The work reported was carried out from 6 Decemher 1982 to 17
February 1983. It was authorized by the same project and test area above. :i.jj
el
The use of trade names in this report does not constitute an official endorsement or S
approval of the use of such commercial hardware or software. This report may not be cited for 3 B
. purposes of advertisement. P
—
Reproduction of this document in whole or in part is prohibited except with 1
. permission of the Commander, Chemical Systems Laboratory, ATTN: DRDAR-CLJ-IR,
Aberdeen Proving Ground, Maryland 21010. However, the Defense Technical Information
Tenter and the National Technical Information Service are authorized to reproduce the )
document for US Government purposes. __j
This report has been approved for release to the public. 4

Accession TFor
}__._ [
RTIS ~=7rsl

DTIC T»3 ]

Unannaunted !
JustizZicaticn S
By S

Distribution/

’ Availability Codes
© -7 ]

[Avail ana/or

* Y%7 Ipist

Speclal

PN P DA DTy L IRE . W W DR Rl SN R SN TS YR Y




BLANK




CONTENTS

Page
l. INTRODUC'HON.Q..I..C.l‘.......'...0..'..'.'.0...'0.....t......‘.l 7

2. SOLUTION ALGORITHM ..tcuvenennecsseseenvascsnccssoessasconssasens 8
3. THE DELTA M METHOD FOR THE TWOTRAN CODE.....cccc0teasensescss 10
4. MODEL SCENARIO ..c.cccececssssescvsssssscsossoscssnsssssssssnsecss 11
AVERAGE INTENSITY AND BEER-LAMBERT CORRECTION FACTOR ..... 12
. NUMERICAL RESULTS .ovvcnaeenscancesssscsassesasnsoosasesssossaesss 13
1 Rectangular Geometry ...ccceseessscccsososscsssssnssencccssnssssase 13
2 Cylindrical Geometry cooevcescsccosscsossscersossossscsssascscnsne 13
7. DISCUSSION ...cccevereecsenscovasesscosasoscsssosscasacssassnascnsss 14

LITERATURE CITED .t ..cveeecescscoccessscsscsossssnscssassassassacse 15

APPENDIXES
A. Figures...........-.-..........--............-...a-.......-...-. 17

Bo Tables.......-....--..-.o.......-....-.................-..--.o-. 27

DISTRIBU.HON UST.o-.--.....oo...o-.-...o.....-..-..--....-..--..-. 29

R g [ PR S o et L e te e e et X . PN R O S
PRI P AE YP PRE P T WERAT NN S SN AL Y P S PP SO SO i PP P L P i O (I 1 LIPS PUIY WL UG N SGIr CRAT WU, VN, FUih S A YR W IR W




.

IR IR

Blank




T T LT TR T R S T T LT TR Y

- YR T F W W W W W T, v
T R Y N e NS N S R e UL T L T

<. APPLICATION OF TWO-DIMENSIONAL DISCRETE-ORDINATES
METHOD TO MULTIPLE SCATTERING OF LASER RADIATION

{ 1 INTRODUCTION

. Light propagation through an optically thick particulate medium is basically a
multiple-scattering problem in which rays or photons traverse a medium of scatterers and
undergo many scattering events before escaping. A natural framework to deal with this type of
problem is provided hy the theory of radiative transfer. The linear Boltzmann equation - in the
context of radiative energy also termed the "equation %f transfer" - governs the radiation field
in a medium that absorbs, emits, and scatters radiation.

P

The complexity of the equation of transfer forces one to implement numerical
methods of solution. Such methods seek to introduce approximations that convert the integro-
differential form of the equation of transfei into a system of algebraic equations that is
amenable to solution by a digital computer. The most direct procedure is the discrete-
X ordinates approach in which the radiance distribution functlon I(r, »A) is replaced by a discrete
set of values at a discrete set of phase space points (¥, ,Q The derivatives and integrals
appearing in the equation of transfer must also be ref)laced by a corresponding discrete
representation using finite difference and numerical integration schemes. In this way one
arrives at a set of algebraic equations that can be solved by using standard numerical algorithins
on a digital computer.

- Unfortunately, such a calculation becomes an immense undertaking if only a "brute
force" discretization of the equation of transfer is employed. For example, a typical mesh size
of 100 by 100 by 100 space points, 10 wavelength groups, and 10 discrete angle, e§ would yield an
extremely large set of simultaneous algebraic equations involving at least 10° discrete phase
space points, which is a rather formidable task even on the CDC-7600 or Cray-1 computers.

The discrete-ordinates method is discussed in detail in references 1-5. In the
. context of neutron tragsport theory, a comprehensive treatment is contained in the monograph
N of Bell and Glasstone.” Modern neutron transport 7methods have only recently been applied to
atmospheric radiative transfer problems by Gerstl.! Following reference 5, we summarize the

main features of the method:

(a) The solution of the transfer equation may be derived explicitly and therefore
the intensity and flux computations do not only depend on the total optical depth of aerosol
- layers.

(b) The method yields the radiation field at all spatial locations as well as the
reflection and transmission without additional computational effort.

g (c) The computer time required to calculate intensity and flux is relatively small as
- compared with other techniques.

4 ) For two- and three-dimensional geometries, the solution of the discrete-ordinates equations
becomes increasingly complex. Extensions from two to three dimensions result in severe
. computational problems because of the sheer size of the system of equations rather than any
“ basic complications in num glcal solution algorithins from the added dimension. A discrete-
N ordinates code THREETRAN® which is capable of treating three-dimensional geometry, exists

only in an experimental version.




When looking for rigorous solutions to the problem of light scattering and
propagation in dense aerosols, it thus becomes imperative to explore the usefulness and the
range of applicability of the existing two-dimensional transpor codes. We note that ri%latwe

transfer in two dimensions has earlier bheen studied by Fowler fi:wler and Sung. The
purpose of this paper is to apply the two-dimensional code TWOTRAN to the description of a
laser beam scattered (reflected) from a fixed target. This is obviously relevant to the
evaluation of the effectiveness of electro-optical systems under aerosol-loaded and adverse
weather conditions. After summarizing the main features of the TWOTRAN code and the
solution %lgorithm in section 2, we make use in section 3 of the advantages of the delta M
method. In section 4, we describe our model scenario where a collimated laser heam
propagating in a homogeneous rural aerosol is subsequently scattered from an isotropic target.
The average intensity and Beer/Lambert correction factor are introduced in section 5. They
allow us to make a comparative study of results in the rectangular (x-y) and cylindrical (r-z)
geometries, which is contained in section 6. Section 7 is devoted to the discussion of the results
obtained, and conclusions outlining future lines of research.

2. SOLUTION ALGORITHM

For calculations reported here, the general-purpose code TWOTRAN-II has heen
adapted to radiative transfer calculations of a laser beam in a realistic aerosol medium.

TWOTRAN-II is a general purpose FORTRAN code that solves the two-dimensional
multigroup transport equation in (x,y), (r,0), and (r,z) geometries. Both regular and adjoint,
inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white or
input-specified boundary flux conditions are solved. General anisotropic scattering is allowed
and anisotropic inhomogeneous sources are permitted.

The discrete ordinates approximation for the angular variable is used in finite
difference form which is solved with the central (diamond) difference approximation. Negative
fluxes are eliminated by a local set-to-zero and correct algorithm. Standard inner and outer
iterative cycles are accelerated by coarse mesh which may be independent of the material
mesh. Our computations with TWOTRAN performed with a pointwise convergence criterion of
2 x 107° using 144 discrete directions (S;¢) and 42 by 42 mesh point required the running time of
1.2-1.5 min on the CDC-7600 machine.

In the absence of volumetric sources, the equation of transfer to be solved is

Q-vI(r,2) + o, (P1(r,2) = [ o (r,i)I(r,0" )" m

where

o, is the volume extinction coefficient and I(r, ) is the radiance distribution
function. In nuclear radiation transport terminology, as(r, ﬁ) is the dlfferentlal-scattermg—
transfer cross section, where{l is the cosine of the angle between the directions Q and @ of the
mcomlng and outgoing pencils of radiation. In terms of ¢ (r,p), the scattering pnase function,
P(r,{), is given by

o oy /0
P(r,fi) = o (r,f)/og(r) 2)
with the normalizaton
J P(r,fi)di =1 3)
- [ A 0
I (r.i)dp = o, (r) (4)
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whera
aJ\(L’) is the volume scattering coefficient at location r.

In two-dimensional x-y and r-z geometries, the TWOTRAN code requires the sots of
spatial meshes (x),y,) or (rk,ze and .liscrate directions f Qm}. We always choose the hea a axis
in the y or z directinas, in %-y and r-z geometries, respectively. As the set of li. oot
directions {ﬁl } is determined hy the choice of a Gaussian quadrature, there will be usually no
- direction avai'{‘able along the y or z axes. [t is tharafore convenient to divide the tatal radia e
o into two parts, the reduced T, and the diffuse radiance I;. The radiced radiance satisfies
equation (1) with the right-hams side set equal to z2ro. In (he <-y geometry, for example, it is

1 y - ) '
Ir1(g’£) - I(g,x - y{)x/ny’O) exp[' ﬁ; £ Ut(x y'Qx/any )d.V ] (5
F DI

Q. and Qy are the components of the vector Qin the plane <-v.

Tue diffuse radiance satisfies the equation

Q-1 (r,2) + 0, (1) (r,0) = [ o (r,i)Iy(r,0")d2" + Qr.2) ()

where () is the soar 2 fnction

Q(E!Q) = I os(ﬁaﬁ)lri(ﬁ,g')dﬂ' (7)

Zswratal by the reduced radiance.

. In order to obtain the solution for the diffuse radiance fromn the TWOTRAN program,
bothe, and Q should be represented by finite Legendre polynomial expansions. The function
Ts(e, i2) is ‘vritten as

L
N 28 +1 ¢ a
= r)P
0.(r,H) 1,}:20 == 0.(r) o) @
where the acpansioa coafficients aé are assumed to be known. To write 1071 v +xpaasion for
the source function O, we take the case of rectangular x-y geometry as an example. For a
eolli natad laser beam with the spatial shape described by a faastioa Fixt at y =0

I(x,y=0,02) = F(x)8(Q - §) (9)

b7 virtue of equation (5) the rodusd radiaace hecomes

y ] ]
I.;(8,r) = F(x)8(Q - §)exp[- g o, (x,y")dy'] 10

Ejuation (7) now vields y
Q(r.2) = F(x)o (r,2-9)expl- [ o, (x,y')dy'] (1
(o]

\s is evidant bv inspection of equations (8) and (11), th» oxpansion of the source
faaction involves the series expansion of equalioa (11) with th: Legendre polynomials P;(Q§2)
takea at the argument Py (). TFor strongly asymmetric phase functions, the computational
difficulties arise becaus such phase functions cannot he ropresented by polynomials of low
degrea. A way out of the predica:nent is the delta M method, which we will now discuss in the
context of the TWOTRAN transport code. ’
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3. THE NDELTA M METHOD FOR THE TWOTRAN CODE ‘

The delta M method, which relies essentially on matching the first 2M phase
‘s function moments and using a Dirac delta functjon representation of forward scattering, is an
;ﬂ extension of the § - Eddington approximation.l‘ The method has r%aently been discassel ia
ENe connection with the scaling group of the radiative transfer equation. In order to adapt the
N delta M method for our purposes, we note that the only physical quantities required to run the
e TWOTRAN code are the expansion coefficients g% s in equation (8) and the extinction
n coefficient 0, at each mesh side. "When the phase function is approximated by a Dirac delta
function forward peak and a (2M - 1)-term expansion, the functina 0 in equation (8) becomes

* 2M-1
Ay o 20 + 1 % .
- o (el = 1 S oL(r)P, (i) (12)

where for highly asymmetric phase functions the number 2M-1 will be much smaller than L.
The condition that the first (2M-1)-phase-function moments be matched exactly leads to

X )] n
= 4* - (13)
o (r) =a.(r) - f
with

. f = o2 (1)
N Since the extinction coefficient transforms as
:-,‘:: x £0°

the new equatinoa of transfer for the transformed radiance I* hecomes

- x %X % x O,

o Q-vl + o1 =J o(r,il (r,Q')da’ (16)
. Thus, by comparing equation (15) with equation (1), we see that the delta M method does not

- change the functional form of the traasfer equation.

o Actually, as explained in section 2, we solve the equation of transfer for the diffuse
- radiance. This is obtained from equation (6), in which the Og and 0, have been transformed
- according to equations (12) and (15). The reduced part of the radiance is still given by a simple

analytic expression, obtained by combining equatioas (5) ana (15):
= 1 expl 22 T (10)(x = y'a,/0 .y )dy'] (17)

ri rinyo X Y gy Yy Iy
Tor a horsgeneous mediun, with the collimated ¥aser 21 a peopagating along the y
axis, equation (17) simpifies to
x
- 0
I.; I exp(fcsy) (18)
e Therefore, from the approximate equality

(19)
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X
I I
C= -Ii- = exp(fo:y) -1+ 12- (20)
" ™

Equation (20) enables one to evaluate the multiple-scattering corrections to the exponential
decay expressed by the Beer-Lambert law.

4. MODEL SCENARIO

In this section we describe the results pertaining to a simple scenario in which the
scattering medium is formed hy a homogeneous distribution of 99% relative idity rural
aerosol. The rural model, as developed by the Air Force Geophysics Laboratory,” ~ is intended
to represent the aerosol conditions one finds in continental areas which are not directly
influenced by industrial aerosol sources. The optical characteristics of the medium are
generated with the aid of the AGAUSX code, as described in references 16 and 17. Figure A-1
(appendix A) shows relative locations of the laser source and the isotropically reflecting target
in the x-y (r-z) plane. The x (r) axis, named also "height", is chosen perpendicular to the surface
of the earth, while the y (z) axis, named "distance” is taken along the axis of symmetry of the
laser beam. In r-z geometry, the medium has an azimuthal (rotational) symmetry around the z
axis. The symmetry condition in x-y geometry may be illustrated by imagining that the medium
is infinite in extent in the direction perpendicular to the x-y plane. Both the x (r} and y (z)
directions are divided into six coarse mesh cells whose boundaries are given by x (r} = 0.0, 0.002,
0.010, 0.050, 0.8, 1.0, 2.5 km, and y (z) = 0.0, 3.0, 3.8, 4.0, 4.006, 4.10¢ and 4.4 km. In addition,
each coarse mesh cell is subdivided into fine mesh cells of equal width. In the x (r) direction,
the sequence 2, 8, 10, 10, 2, 10 specifies the number of fine meshes per coarse mesh. The
corresponding numbers in the y (z) directions are 20, 8, 5, 2, 4 and 3. Thus the x-y (r-z) plane
has been covered by 42 x 12 fine mesh cells with unequal sides. In x-y geometry, the
coordinates of the laser source are x_ = 1.5 m and Yo = 3.0 km. The source emits a Gaussian
collimated heam with the radiance distribution for y =y, given by the formula

10%,50,8) = F/(n 2w)expl= (x-x0) W16 | -

where F is the total energy of the beam, and § denotes the Dirac delta function. In realistic
situations, one usually deals with a pulse source. Tygically, the emitted pulses are of 1 Aw
power and 20 nsec duration. We thus set F = 2 x 107“J per pulse and take w = 0.5 m. As the
distance between the source and the target is equal to 1 km, a point source having the
divergence of 1 mrad would produce a spot of | m in diameter at the target's location. The
collimated Gaussian bheam with half width w = 0.5 can therefore be viewed as a beam equivalent
to that produced by a divergent point source, at least as far as the target illumination is
concerned. The target, with assumed reflectivity r, = 0.5, reradiates the incident beam
isotropically generating a diffuse radiation field in tixe x~y plane. The ground reflectivity
(surface albedo) for x = 0 is assumed to be r_ = 0.1. In r-z geometry, the radiance distribution
function in the plane z = z_ is given as &

1(r,20,8) = +5 exp(-r2/d)s(d = 1) 2)
nw

Equation (22) implies that the beam axis coincides with the z-axis. As before we take z_ =3 km
and suppress the ground reflectivity r_. For rectangular x-y geometry, as the beam is parallel
to the ground surface x = 0, the exact value of r_ has only a negligible effect on the results of
our calculations. g

11
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We choose the concentrgtion of the aerosol particles to be described by the number
densfty of 50,000 particles per cm”. This corresponds to the extinction coefficient 0 = 1.312
km™ ' at the wavelength A = 1.06 ym. For A = 0.55HM the extinction coefficient is 2.57 km™ .

The meterological (visual) range V, as defined by the Koschmieder formula

v = 3.912
G(A=0.55 pm) (23)

is then V = 1.52 km. As the number delnsity increases to 100,000 particles per cm3, the
extinction coefficient becomes 0= 2.64 km™ ' and the meteorological range decreases to V = 0.76
km. The optical depths at A = 1.06 pym for the distance between laser and the target (1 km) in
the two cases considered are 1.32 (for V = 1.52 km) and 2.64 (for V = 0.76 km).

5. AVERAGE INTENSITY AND BEER-LAMBERT CORRECTION FACTOR

->
The knowlege of the radiance distribution function I(r,a)allows us to introduce the
average intensity

AP = 351G D@ (24)

The average intensity does not, in general, represent the power flow but is proportional to the
radiant energy at a spatial mesh point r. In equation (24) and in the remainder of this work,
I(r,ﬁ) is the diffuse radiance at a two-dimensional spatial mesh point specified by the radius
vector v. The direct (reduced) beam intensity is omitted.

In order to investigate the relative importance of multiple-scattering corrections to
the Beer-Lambert law, we introduce a correction factor C which is entirely due to multiple
scattering. As the target reflects isotropi~ally, the reduced (unscattered) light intensity at a
distance from the target is

Pet
I, = =
r 4ng (25)

where P is the power emitted by the target and v = of the optical depth between the target
and a receiver. The total intensity, a sum of the reduced and diffuse parts,

may be written in terms of a correction factor C to Beer-Lambert's law as

Fot ) I =C = e (27)
1= 1+C) ,sothatig = e
A
Solving equation (27) for C, we obtain explicitly
ce_td

As the diffuse intensity is created within the medium due to multiple scattering, the correction
factor vanishes when only target reflection and absorption are considered.
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6. NUMERICAL RESULTS
The quantities of interest introduced in section 4, namely the average intensity,
scattered radiance and the B/L correction factor will now be computed in x-y and r-z

geometries.

6.1 Rectangular Geometry.

Figure A-2 shows the average intensity distribution for multiply-scattered laser
radiation corresponding to the visual range V = 1.52 km. In figure A-3, the same result is shown
with the spatial scale distorted. This displays detailed intensity variations. The distortion
represents every (nonequidistant) spatial fine mesh, as defined in figure 1 and section 4, as if it
were equally spaced. This feature causes the intensity peaks created by the aerosol environ-
ment and the target to be broadened and more easily recognizable in figure A-3.

In figures A4 and A-5, the average intensity distribution is shown for a situation
corresp?nding to V = 0,76 km where the aerosol concentration is increased to 100,000 particles
per cm”, The bimodal distribution in figures A-2 and A-3, with the target radiation being the
dominant feature, becomes now a monomodal and the target is no longer easily recognizable.
This result shows that for sufficiently high aerosol concentration the dominant scattered signal
corresponds essentially to the interaction of laser radiation with the aeroso! environment.

Dropping thus the case of higher aerosol concentration, we list in tables B-1 and B-2
{appendix B) the B/L correction factor for V = 1.52 km assuming a dctector moving in a plane
parallel to the surface of the earth and pointing toward the target. In actual computations the
reduced intensity, as defined by equation (5), was obtained by executing our computer code in
the case involving no scattering, i.e., setting the scattering coefficient of aerosols o¢_ = 0. The
coordinates of the detector were determined by finding a ray, in the set of discrete 3irections,
which emanates from the target to cross the line along which the detector is assumed to mnove.

The use of the delta M method reduces significantly the computer timme rejuired to
obtain the radiance distribution function and the correction factors. When executing the
TWOTRAN code with the P, expansion [L=5 in equation (8)], the CPU time was 90 sec for 1764
spatial meshes and 144 directions. Employing the delta 4 approximation results in the reduction
of CPU time down to 45 sec. The two columns of the correction factors in tables 3-1 and B-2
refer to these two ways of computation.

6.2 Cylindrical Geometry.

Leaving unchanged other parameters, we proceed to the cylindrical (r-z) geometry
model. Figures A-6 and A-7 show the average intensity when the visual range is 1.52 km, while
figures A-8 and A-9 correspond to the visual range of 0.76 km. As before, the target signal
becomes undistinguishable from the aerosol-scattered radiation as the visual range becomes
smaller than the distance between laser source and target. Tables B-3 and B—4 list the scat-
tered radiance and the B/L correction factors for the aerosol model with visual range V = 1.52
km in the case of a detector moving along a line parallel to the beam axis.
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7. DISCUSSION
"f: Comparing the results contained in the figures A-2 to A-5 (x-y model) with those of
o figures A-6 to A-9 (r-z model), we find the same characteristic features in the diffuse average

intensity. In particular, the scattered radiance from the target becomes negligibly small as the
visual range is shorter than the distance between the source and the target. We thus conclude
that the x-y and r-z geometry models are qualitatively equivalent as far as the target detection
is concerned. The infinite z direction in x-y geometry is only an expression of a sy.nmetry
condition and is not a perturbing factor as long as results are considered only in the x-y plane.

To the extent that the plots of average intensity show a qualitative agreement
between the two geometries, insight into the quantitative results can be gained by inspecting
tables B-1 through B-4. For smaller optical depths, up to about 7 = 1.0, the agreement in the
calculated correction factors is indeed quite satisfactory and suggests a functional form of the
. correction factor described by a universal function of only. As the distance between the
. target and the detector increases, the observed discrepancies can be attributed to the ray

effect. This phenomenon, due to the basic discrete ordinate approximation itself, consists, in
2 essence, in solving the transport equation along a limited number of discrete characteristics
o (i.e., rays). For the sake of illustration, let us consider an isotropic line source in a purely
-:: absorbing medium. Then, clearly, the resultant analytical radiance distribution function will
possess azimuthal syminetry abhout the source line. But if we apply the discrete ordinates
method to this situation, the resultant radiance will consist of a stepfunction in the azimuthal
angle because only specific directions emanating from the line source will contain the source
photons. Thus the discrete ordinates method approximates the azimuthally uniferm radiance by

a discrete set of values at discrete azimuthal angles. The existing remfdies like those trans-
- forming the discrete ordinates equations to spherical-harmonic form,ls— 0 will be an ohject of
future research.

In summary, we have applied the discrete ordinates code TWOTRAN to the problem
of laser heam propagation and multiple scattering in dense aerosols. The delta M approximation
has proven to be of definite advantage for our applications. The main result of our investigation
consists in validating the use of an x-y geometry model in describing a realistic three-dimen-
> sional scenario. This is achieved by computing the average intensity and B/L correction factor
- in x-y and r-z geometries. The effect of aerosol concentration on the detectability of a target
follows independently of the choice of x-y or r-z geometry. In addition, as we have shown by
evaluating the multiple-scattering corrections to the Beer-Lambert law, the multiple-scattering
contribution to the target signature can be quite dramatic even for a moderate optical thickness
of the order of 2. As the optical thickness increases beyond 7 = 1.5, the correction factor grows
very rapidly. The problem, however, in the context of the discussed scenario becomes less
realistic due to the decreased visual range.

Of definite interest would be a further study of the ray effect as iveli as a
comparison of the resulﬁ obtained with the results employing the small angle 1-23 qad
diffusion approximations.
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Figure A-2. Normalized Average Intensity on a Real Scale Lattice of Partial
Mesh Points in x-y Geometry. Visual Range 1.52 km.
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Figure A-3. Normalized Average Intensity on a Distorted Lattice of Spatial
Mesh Points in x-y Geometry. Visual Range 1.52 km.
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Figure A-5. Normalized Average Intensity on a Distorted Lattice of
Spatial Mesh Points in x-y Geometry. Visual Range 0.76 km.
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Spatial Mesh Points in r-z Geometry. Visual Range 1.52 km.
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Figure A-7. Normalized Average Intensity on a Distorted Lattice of
Spatial Mesh Points in r-z Geometry. Visual Range 1.52 km.




‘c‘.

-k
-

T

LT

i T y—"

(G i i et 4 A=t

Figure A-8. Normalized Average Intensity on a Real Scale Lattice of

Spatial Mesh Points in r-z Geometry. Visual Range 0.76 km.
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Figure A-9. Normalized Average Intensity on a Distorted Lattice of
Spatial Mesh Points in r-z Geometry. Visual Range 0.76 km.
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APPENDIX B
TABLES
‘ Table B-1. X-Y Geometry: Target CToordinates x = 0.001 km,
. y =4.000 km: Detector Height = 0.200 km
Detect‘or’s Optical Radiance B Beer/I...ambert
y coordinate depth correction factor
P5 Delta -4
km w.m2. sr71
2.515 1.978 2.9792 x 107} 1.14 1.46
3.529 0.575 1.3051 x 107} 0.37 0.43
3.767 0.406 1.8615 x 1071 0.29 0.29
;- 3.822 0.353 3.0306 x 107} 0.21 0.21
. 3.867 0.317 3.8526 x 107! 0.15 0.15
=&
ﬁ Table B-2. X-Y Geormetry: Target Coordinates x = 0.001 km,
',.i y =4.000 km: Detector Height = 0.500 km
o
Y
Detector's Optical Radiance Beer/Lambert
y coordinate depth correction factor
P5 Delta 4
km w.m 2. s}
2.824 1.687 2.9857 x 1072 1.44 1.72
3.556 0.883 1.1178 x 1071 0.74 0.77
3.568 0.792 1.0735 x 107} 0.64 0.66
3.904 0.672 1.9973 x 1071 0.32 0.38

Table B-3. R-Z Geometry: Target Coordinates r = 0.0 km,
2z =4.000 km: Detector Height r = 0.200 km

Detector's Optical Radiance Beer/Lambert
y coordinate depth correction factor
Ps Delta 4
km wom2. sr”]
2.959 1.398 8.9695 x 1072 0.64 0.83
3.699 0.477 5.1730 x 1071 0.38 0.41
3,775 0.397 9.4538 x 10~} 0.27 0.28
3.829 0.348 2.8858 x 10*0 0.13 0.14
______ el
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Table B4. R-Z Geometry: Target Coordinates r = 0.0 km,
z =4.000 km: Detector Height r = 0.500 km.
Detector's Optical Radiance Beer/Lambert
y coordinate depth i cortection factor
] — P5 Delta -1

km w.m 2, st}
1.398 3.496 2.6520 x 1073 1.66 2.78
2.898 1.596 3.8658 x 1072 0.85 1.92
3.247 1.193 2.5389 x 107! 0.69 0.82
3.437 0.993 2.2313 x 107} 0.55 0.65
3.571 0.869 1.6951 x 1071 0.50 0.61
3.682 0.782 2.2435 x 107} 0.36 0.44
3.787 0.717 2.2986 x 107! 0.35 0.41

28

ERP PO S T YR - )







